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§1 Semester 1

§1.1 CHAPTER 1: Integers

The integers are defined as:

Z = {. . . ,−2,−1, 0, 1, 2 . . . }.

We can use elementary number theory to determine when cycles repeat, for
example,

Example 1.1. ik = ij ⇐⇒ j − k | 4.

Example 1.2.

ω = −1

2
+

√
3

2
i.

ωk = ωj ⇐⇒ j − k | 3.

Math research is like a ball. We inflate it as we discover new things, so there is
more surface area on the outside to discover even more things.

§1.2 Divisors

N is used for {1, 2, . . . }.

Definition 1.3. a is a multiple of b if

a = qb, q ∈ Z.

Also b divides a is written as b | a.

Set of all multiples of a is denoted aZ. The only multiple of 0 is 0. If b | a,
then |b| ≤ |a| . Therefore if b | 1, then b = ±1.

Axiom 1.4 (Well-Ordering Principle)

Any set of natural numbers has contains a smallest element.

Theorem 1.5 (The Division Algorithm)

For any integers a, b with b > 0, there exist unique q and r such that:

a = bq + r with 0 ≤ r < b.

Proof. Solving for r gives us
r = a− bq

Consider the set
R = {a− bq | q ∈ Z}.
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First we show that R+, the set of positive values in R, is non-empty. a−b(− |a|) =
a+ b · |a| is in the set and is non-negative since b ≥ 1.
Now to show that 0 ≤ r < b, suppose some s ≥ b exists and we let s = r − b.

Then
s = a− b(q + 1) ∈ R+,

but s < r, contradicting our definition.
And finally, we prove q and r are unique by supposing they arent: a = bp+ s,

which implies |s− r| < b.

bp+ s = bq + r =⇒ s− r = b(q − p) =⇒ b | s− r.

But then since |s− r| < b, s− r = 0.

Theorem 1.6

Let I be a nonempty set of integers closed under addition and subtraction.
Either I = {0} or the smallest element of I generates the rest.

Proof. We first show the set contains a positive element to apply the well ordering
principle. One of a,−a ∈ I is positive.

Claim 1.7 — I = bZ

bZ ⊆ I because I is closed under addition and therefore contains all multiples of
b.

To show I ⊆ bZ, we write an element c ∈ I as c = bq+ r by division algorithm.
Since I contains bq, it must contain r = c− bq. But this is a contradiction unless
r = 0, since b was chosen as the smallest element. We conclude r = 0, and
I = bZ.

Definition 1.8 (Greatest Common Divisor). Denoted d = (a, b). d must be
divisible by a and b, and any shared divisor of a and b must divide d.

Theorem 1.9

If d = (a, b), then the smallest linear combination of a and b evaluates to d.
Moreover, an integer is a linear combination of a and b iff it has divisor d.

Proof. We show that the set generated by linear combinations of a and b easily,
omitted. By 1.6, all we need to show is that the smallest element of linear
combinations of a and b is d. First we show 1.d | a, d | b, which is clear, since
a, b ∈ I. Secondly, if c | a and c | b, then

d = ma+ nb = m(cq1) + n(cq2) = c(mq1 + nq2),

completing our proof.

We introduce the Euclidean Algorithm, which uses the fact that when a = bq+r,
(a, b) = (b, r).
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Example 1.10. (24, 18) = (18, 6) = 6.

We can also do it with matrices to find linear combinations that add to a number
:D.

§1.3 Primes

Proposition 1.11

(a, b) = 1 ⇐⇒ there is a linear combination of a and b that sums to 1.

Proof. Both ways follow from 1.9.

Proposition 1.12

If a, b, c ∈ Z and a = 0 or b = 0,

1. b | ac =⇒ b | (a, b) · c.

2. b | ac and (a, b) = 1 =⇒ b | c.

3. b | a, c | a, and (b, c) = 1, then bc | a.

4. (a, bc) = 1 ⇐⇒ (a, b) = 1 and (a, c) = 1.

Proof. (1.) Represent (a, b) as ma+ nb. Then

(a, b) · c = mac+mnb.

First term is divisible by b from the assumption, second term is divisible by b.
(2.) Follows from (1)
(3.) a = bq, and therefore, c | bq. It follows from (2) that c | q or q = cp. Then
a = bcp.
(4.) If (a, bc) = 1, then ma+ nbc = 1, so we factor out b and c from the second
term, completing our proof. Converse: Add linear combinations that sum to 1
and factor.

Lemma 1.13 (Euclid’s Lemma)

p > 1 is prime if and only if it satisfies: for all integers a, b, if p | ab, the
either p | a or p | b.

Proof. We know that (p, a) = p or 1. Finish from there. Converse: Assume p is
composite and derive contradiction.
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Corollary 1.14 (Last one but generalized)

p | a1a2 · · · an ⇐⇒ p | ai for all 1 ≤ i ≤ n.

Theorem 1.15 (Fundamental Theorem of Arithmetic)

Every integer a can be factorized uniquely as the product of prime factors.

Proof. Suppose b is the smallest integer that cannot be factored. If it was prime
it could be factorizable, so it is composite. Then b = cd. But then c, d are
factorizable and then b is too.
To prove uniqueness: Suppose a is the smallest integer that has 2 unique

factorizations. 1.14 says that each prime divisor is equal. Now suppose

s =
a

p1
=

a

q1
.

Either s = 1, which implies a has a unique factorization, or s > 1, which implies
s has 2 factorizations, but since s < a, we have a contradiction!

Definition 1.16. Least common multiple of a and b, denoted m = [a, b] if m is
a multiple of both a and b, and any other multiple of the two is a multiple of m.

We can see that
(a, b) · [a, b] = ab.

§1.4 Congruences

Definition 1.17. a ≡ b mod n is congruence.

Proposition 1.18

Let n > 0 be an integer.

1. a ≡ c mod n and b ≡ d mod n, then a± b ≡ c± d mod n and multipli-
cation too

2. If a + c ≡ a + d mod n, then c ≡ d mod n. If ac ≡ ad mod n, and
(a, n) = 1, then c ≡ d mod n.

Proof. (1.) Addition/subtraction is obvious.
Since n | (a− c), n | (ab− cb), and n | (c− d) =⇒ n | (cb− cd). We add those

to get
n | ab− cb+ cb− cd =⇒ n | ab− cd.

So ab ≡ cd mod n.
(2.) Addition is again obvious by subtracting the two equations.
ac ≡ ad =⇒ n | (ac− ad). From 1.12, (a, c) = 1 lets us skip to n | c− d, from

which follows c ≡ d mod n.
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Proposition 1.19

NT; if a, n > 1 are integers, there exists an integer b such that ab ≡ 1 mod n
if and only if (a, n) = 1.

Proof. If we assume that ab ≡ 1 mod n, then ab = qn+ 1, but then some linear
combination of a and n has sum 1. Therefore, (a, n) = 1.
Converse: We know that a linear combination exists, therefore we finish.

Theorem 1.20

Let a, b and n > 1 be integers. The congruence ax ≡ b mod n has a solution
if and only if b is divisible by d, where d = (a, n).

If d | b, then there are d distinct solutions mod n and these solutions are
congruent mod n

d .

Proof. For the first statement, we know that as = b + nq, and then we see a
linear combination of a and n to b. This is a bijection.

For the second, we know that d | b because of the properties of (a, n). Let m =
n
d . If x1 and x2 are solutions, then ax1 ≡ ax2 mod n. Therefore, n | a(x2 − x1).
But then n | d(x2−x1), and m | (x2−x1). It follows that x2 ≡ x1 mod m. Easily
follows the other way.
Given any of the n solutions, we can add m and be find the others, giving d

distinct solutions.

The book introduces a way to calculate linear congruences.

ax ≡ b mod n

First we compute d = (a, n), and there are solutions if d | b. We then divide the
equation by d.

a1x ≡ b1 mod n1.

We now know that a1 and n1 are relatively prime, then we can use the Euclidean
Algorithm to find them.

We then try to find c that satisdy

ca1 ≡ 1 (mod m)

Example 1.21 (Homogeneous Linear Congruences). We try to find the solutions to

ax ≡ 0 mod n.

The first step is to find integers such that a1x ≡ 0 mod n1. But since (a1, n1) = 1,
we can cancel, giving us:

x ≡ 0 mod n, such that: n1 =
n

(a, n)
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Example-example: 28x ≡ 0 mod 48 reduces to x ≡ 0 mod 12. The solutions are
0, 12, 24, 36 modulo 48.

Theorem 1.22 (Chinese Remainder Theorem)

Given that (n,m) = 1:

x ≡ a mod n y ≡ b mod m,

has a solution, and all solutions are equivalent modulo mn.

Proof. Given that (n,m) = 1, then we can write rm + sn = 1. We let x =
arm+bsn, and direct computations verify that this x satisfies the original system.
Last part is true because they must be equal mod both of them.
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§1.5 Integers modulo n

Example 1.23. Elements of Zn = {[0]n, [1]n, . . . , [n− 1]n}

Make sure to use the proper square bracket notations! We usually let a number
be a representative of the congruence class. For example, [5]3 = [8]3. It’s best
to choose one that is less than n, so [2]3.

Proposition 1.24

Addition and multiplication is well-defined in congruence classes. In symbols,

[a]n + [b]n = [a+ b]n [a]n · [b]n = [ab]n.

Proof. We need to show our choices a and b do not matter, just what congruence
class they represent. Let x and y be congruent to a and b respectively modn, so
they represent the same congruence classes. Therefore we just need to prove that
addition and multiplication is well defined modulo n, which it is.

Definition 1.25. If [a]n ∈ Zn and [a]n[b]n = [0]n for some nonzero congruence
class [b]n, then [a]n is called a divisor of zero.

Definition 1.26. If [a]n has a multiplicative inverse, then we call it a unit of
Zn.

Proposition 1.27

[a]n is a unit if and only if (a, n) = 1. A non-zero element of Zn either has a
multiplicative inverse or is a divisor of zero.

Example 1.28 (Finding Multiplicative Inverses). [11]−1
16 can be found by the Euclidean

Algorithm. It evaluates to [3]16.

Proposition 1.29

Euler’s φ function can be calculated for n = pα1
1 pα2

2 · · · pαn
n as

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pn

)
.

Definition 1.30. The set of units of Zn [a] such that (a, n) = 1 is denoted Z×
n .

Note that Z×
n is closed under multiplication.
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Theorem 1.31 (Euler)

If (a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. There are φ(n) congruence classes, {a1, a2, . . . , aφ(n)}. When we multiply
all of them by a, they are all still unique, so they represent the same classes.

a1a2 · · · aφ(n) = (aa1)(aa2) · · · (aaφ(n)) = aφ(n)a1a2 · · · aφ(n)

Therefore by cancelling:
aφ(n) ≡ 1 (mod n)

Corollary 1.32 (Fermat)

p is prime =⇒ ap ≡ a (mod n).

Proof. If p | a we are done. Otherwise use φ(p) = p− 1 if p prime and finish.

10
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§1.6 Chapter 1 End Remarks

• Lagrange proved in 1770 that every positive integer can be expressed as
the sum of 4 squares.

• Gauss proved in 1801 that all n that are not in the form 4m(8k + 7) with
m, k ∈ Z∗ can be expressed as the sum of 3 squares.

• Finally, Euler proved in 1749 that n can be expressed as the sum of 2
squares if and only if when we factor n as a product of primes, the numbers
that are congruent to 3 modulo 4 have even exponents.

§1.7 CHAPTER 2: Functions

One-to-one correspondences are important. Z×
5 is the same as Z4 pretty much, if

only there was a name for that...

§1.8 Functions

Introduce R,Q,C.

Definition 1.33. Given F : S → T , F is a subset of S × T such that for each
element x ∈ S, there is exactly one element y ∈ T such that (x, y) ∈ F .
S is the domain, and T is the codomain. The subset

{y ∈ T | (x, y) ∈ F for some x ∈ S}

of the codomain is called the image of f .

Example 1.34. Given that S = {1, 2, 3} and T = {4, 5, 6}. We can assign F (called
the graph)

F = {(1, 4), (2, 5), (3, 6)}

and
F = {(1, 4), (2, 4), (3, 4)}

and are functions, but
F = {(1, 4), (2, 5), (2, 6)}

is not unless we change S to {1, 3}

We also use the notation f : S → T , and use Imf(S) to represent the image.

Example 1.35 (Inclusion Function). If A ⊆ T , ι : A → T is called the inclusion
function. Graph of ι is

I = {(x, x) ∈ A× T | x ∈ A}

Sometimes a function is not well-defined.

11
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Example 1.36. f : Q → Z is defined as

f(m/n) = m.

However, f(1/2) = 1 and f(3/6) = 3, but the inputs are equal, so it is not well-
defined.

All we need to show that a function f is well-defined is that x1 = x2 =⇒ f(x1) =
f(x2).

Definition 1.37. Composite of functions f : S → T and g : T → U is denoted
(g ◦ f)(x). Rigorous definition is

{(x, z) | (x, y) ∈ F and (y, z) ∈ G for some y ∈ T}

Definition 1.38. For a function f : S → T , it is
Surjective if for any element y ∈ T , there is some x ∈ S.
Injective if f(x1) = f(x2) =⇒ x1 = x2.
Bijective if both.

Note that f : S → T is onto if Imf is equal to the codomain T .

Example 1.39. Let f : S → T be a function. Define f̂ : F → f(S) by f̂(x) = f(x)

for all x ∈ S. By definition f̂ is surjective. If ι : f(S) → T is the inclusion function,

then f = ι ◦ f̂ , and we have written f as the composite of surjective function and a
injective function.

Proposition 1.40

a. If f and g are injective, then f ◦ g and g ◦ f is injective.
b. If f and g are surjective, then f ◦ g and g ◦ f is surjective.

a. Let g(f(x1)) = g(f(x2)) and finish each using injective definition.
b. There is always something that we can find in the composition of the two so
then each must be surjective. (rough sketch, rewrite?)

Definition 1.41. A function is an identity if everything maps to itself. A
function is an inverse if composition of each in both directions results in identities.
In symbols, given f : S → T and g : T → S:

g ◦ f = 1S and f ◦ g = 1T .

Proposition 1.42

f : S → T is a function. f has an inverse ⇐⇒ f is bijective. Inverse is also
unique.

12
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Proof. Assume f has inverse g. Then by definitions, g ◦ f = 1S and f ◦ g = 1T .
Given any element y ∈ T , we have

y = 1T (y) = f(g(y)),

and so f maps g(y) onto y. f is surjective. To show f is injective, let f(x1) =
f(x2), then g(f(x1)) = g(f(x2)), then we must have x1 = x2 because the
composition is the identity function.

Conversely if f is injective and surjective, we define g : T → S as follows. For
each y ∈ T , there exists an element x ∈ S with f(x) = y. Furthermore, there is
one such x ∈ S such that f is injective.
We then define g(y) = x, and it follows that g(f(x)) = x for all x ∈ S.
To establish uniqueness, suppose that h : T → S is also an inverse of f . Then

h = h ◦ 1T = h(fg) = (hf)g = 1S ◦ g = g,

as desired.

Proposition 1.43

Let f : S → T where both S and T are finite with the same number of
elements. Then f is bijective if either f is injective or surjective.

Proof. Suppose |S| = |T | = n. If f is injective, then

B = {f(x1), f(x2), . . . f(xn)} ⊆ T,

it is easy to see with the fact that f is injective that B = T , so f is surjective.
If f is surjective, then suppose that some f(z) = f(z′) = yi where z ̸= z′.

Consider the subset

A = {z, z′, z1 . . . , zi−1, zi+1, . . . , zn} ⊆ S.

But this is impossible since A has more elements than S. Therefore f is also
injective.

§1.9 Equivalence Relations

Definition 1.44. The equivalence relation is a subset R of S × S such that

1. For all a ∈ S (a, a) ∈ R. - reflexive

2. (a, b) ∈ R =⇒ (b, a) ∈ R. - symmetric

3. (a, b), (b, c) ∈ R =⇒ (a, c) ∈ R. - transitive

Definition 1.45. S/ ∼ is the set of all equivalence classes, called the factor set.

13
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Example 1.46. The factor set of S determined by f : S → T is denoted S/f . We
will see later that the function f : S/f → T is a injective function.

Proposition 1.47

Each element of a set S belongs to exactly one equivalence class of S
determined by ∼.

Proof. Suppose that a ∈ [a], [b]. We wish to show that [a] = [b]. Suppose that
some x ∈ [a], use equivalence properties and finish.

Definition 1.48. P is a partition of S if it splits it up (very rigorous terms I
know).

Proposition 1.49

Any partition P of S determines a unique equivalence relation on S such
that P = S/ ∼.

Conversely, S/ ∼ is a partition that determines the equivalence relation ∼.

Proof. P follows equivalence relations well.
P has element Pa. We can show that Pa = [a] by showing that each is a subset

of the other. Therefore P ⊆ S/ ∼.
Let [a] ∈ S/ ∼. Let Pa be a unique element of P for which a ∈ Pa. We show

that [a] and Pa are subsets of each other. Therefore [a] = Pa ∈ P, so P = S/ ∼.
Clearly the equivalence relation partitions the group from 1.47.
To prove that equivalence relation partitions are unique, suppose we have

another one ∼2. If a, b ∈ S and same equivalence class [a] ∈ S/ ∼, then we have
a ∼2 b. Conversely, if a ∼2 b, then we pick an element in their equivalence class
and use transitivity to show that a ∼ b. Therefore a ∼ b ⇐⇒ a ∼2 b, so they
are the same.

Example 1.50. The function ψ : S → S/ ∼ defined by ψ(x) = [x] is a natural
projection from S onto its factor set S/ ∼.

Theorem 1.51

If f : S → T is any function, and ∼f is an equivalence relation that says
x1 ∼f x2 if f(x1) = f(x2), then there is a bijection between the elements of
the image of f(S) and the equivalence classes of S/f .

Proof. Use the function f : S/f → F (S) by f([x]) = f(x). It is easy to prove f
is well defined and that it is bijective.

14
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We can turn a function f in ”better behaving” functions. We let ψ be an inclusion
mapping, π be a natural projection, and f be defined from the last theorem.

S S/f f(S) Tπ f ψ

Notably, π is surjective, f is bijective, and ψ is injective.

Definition 1.52. If f : S → T is a function and B ⊆ T , then the set

{x ∈ S | f(x) ∈ B}

is called the inverse image of B under f .

We sometimes use the notation f−1(B), which may be confused with the
inverse function.

Example 1.53. We can write the inverse image of any element of the image of f
with its corresponding equivalence class.

S/f = {f−1(y) | y ∈ f(S)}.

Note that when f is bijective, we know that each inverse image represents a single
element. Therefore the notation kinda makes sense.

§1.10 Permutations

Definition 1.54. All bijections of a set S to itself are permutations. The
set of all permutations of S is denoted Sym(S). The set of all permutations of
{1, 2, . . . , n} is Sn.

Sn has n! elements. To invert σ, simply switch the top and bottom rows of
the permutation and sort the top.

Example 1.55. Given

σ =

(
1 2 3 4
4 3 1 2

)
,

then

σ−1 =

(
4 3 1 2
1 2 3 4

)
=

(
1 2 3 4
3 4 2 1

)

Introduction to cycles here...

Example 1.56.

σ =

(
1 2 3 4
4 3 1 2

)
,

can be written as (1, 4, 2, 3).

15



Pramana Saldin (Spring 2022) Math 531 (Modern Algebra) Notes

Proposition 1.57

Two disjoint cycles σ, τ commute.

Proof. (sketch) if we compose both, anything that is affected by σ remains fixed
by τ and vice versa. If some element is in neither than it is fixed by both, nice.

Theorem 1.58

Every permutation of Sn can be written as the product of disjoint cycles.

Proof. There is some minimum r such that σr sends 1 to 1. Then we have distinct
cycles

(1, σ(1), . . . σr−1(1))

If r < n, then let a be the least integer not in the set. Continue creating cycles
like this. We have developed an algorithm for creating disjoint cycles.

This is similar for doing composition of cycles, just make sure you do it right to
left.

Example 1.59. Given cycles

(2, 5, 1, 4, 3) and (4, 6, 2),

first we run 1 through it. It gets sent to 4, which gets sent to 6, then to 5.
Then 2 gets sent to 3, and we finish since we have covered all. Therefore

(2, 5, 1, 4, 3)(4, 6, 2) = (1, 4, 6, 5)(2, 3).

Definition 1.60. The order m of a permutation σ such that σm = (1).

Proposition 1.61

If σ has order m and σi = σj ⇐⇒ i ≡ j mod m.

Proposition 1.62

If σ is written as the product of disjoint cycles, then its order is the lcm of
the cycle lengths.

The inverse of a cycle is as simple as reversing the order of the cycle.

Definition 1.63. A cycle of length 2 is called a transposition.
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Proposition 1.64

Any permutation can be written as the product of transpositions.

Theorem 1.65

You cannot express an even permutation as an odd one, and vice-versa.

Proof. Suppose you can. Then write

σ = a1a2 · · · a2m = b1b2 · · · b2n+1.

Therefore
(1) = σσ−1 = a1a2 · · · a2mb2n+1b2n · · · b1,

and note that we have written (1) as an odd permutation.
Next suppose that (1) = p1p2 · · · pk is the shortest odd permutation of σ.

Also suppose that p1 = (a, b). But then a must appear somewhere else in
a transposition, otherwise p1p2 · · · pk(a) = b, contradiction. Assume that our
product has the least number of a’s.
Let (a, u, v, r) be distinct. Then (u, v)(a, r) = (a, r)(u, v), and (u, v)(a, v) =

(a, u)(u, v). Therefore we can move a to the next transposition. Let the next
transposition with a be p2 = (a, c). If c = b, then p1p2 = (1) and p3p4 · · · pk = (1),
which is shorter, contradiction.

Otherwise, since (a, b)(a, c) = (a, c)(b, c), so (1) = (a, c)(b, c)p3p4 · · · pk, but it
has fewer a’s. Another contradiction.
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§1.11 CHAPTER 3: Groups

Introduces binary operations, the idea of associativity, identity and inverses. In
fact, the binary operation has at most one identity element, and each element
has at most one inverse.

§1.12 Definition of a Group

Proposition 1.66

For a binary operation and a, b ∈ S,

(ab)−1 = b−1a−1.

Definition 1.67. Groups satisfy 4 properties (the first is a result of binary
operations). Closure (For all a, b ∈ G, the element a ∗ b is well-defined element
of G), Associativity, Identity, Inverses.

Example 1.68. R×,Q×,C× are all groups. Z× is a group if its only elements are
±1.

Proposition 1.69

If a, b ∈ G where G is a group, then each of the equations ax = b and xa = b
have unique solutions.

Conversely if G is a nonempty set with a binary operation so ax = b and
xa = b have solutions ∀a, b ∈ G, then G is a group.

Definition 1.70 (Niels Abel). Commutative groups are called abelian.

Order of a group, if |G| not finite, it is infinite.

Example 1.71. The set of units of Z×
n is an abelian group.

Example 1.72. GLn(R) is a group. Don’t forget the 2× 2 matrix inverse:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

§1.13 Subgroups

H is a subgroup if it is subset of G and is a group under the operation used by
G (induced).
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Example 1.73. SLn(R) ≤ GLn(R).

Proposition 1.74 (Subgroup Properties)

H ≤ G if and only if:

1. ab ∈ H ∀a, b ∈ H.

2. e ∈ H.

3. a−1 ∈ H ∀a ∈ H.

Corollary 1.75 (One Step Subgroup Test)

H ≤ G iff H nonempty and ab−1 ∈ H ∀a, b ∈ H.

Corollary 1.76

If H is a finite nonempty subset of a group G, then H ≤ G ⇐⇒ ab ∈
H ∀a, b ∈ H.

Proposition 1.77

Let G be a group with a ∈ G.

• ⟨a⟩ ≤ G.

• Any K ≤ G with a ∈ K =⇒ ⟨a⟩ ⊆ K.

Intersection of subgroups is a subgroup. Cyclic groups are ⟨a⟩. Z has generator
1 or −1.

Lemma 1.78

Let H ≤ G. For a, b ∈ G, define a ∼ b if ab−1 ∈ H. Then ∼ is an equivalence
relation.

Proof. Reflexive: aa−1 = e ∈ H. Symmetric: ab−1 ∈ H but then (ab−1)−1 ∈ H.
Transitive: (ab−1)(bc−1) = ab−1 ∈ H.

Theorem 1.79 (Lagrange’s Theorem)

The order of any subgroup is a divisor of |G|.

Let |G| = n, |H| = m. Use ∼ from the last lemma.
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Claim 1.80 — For any a ∈ G, the function pa : H → [a], x 7→ xa ∀x ∈ H
is a bijection between H and [a].

Imf is correct since pa(h) = ha ∈ [a] and (ha)(a−1) = h ∈ H. pa injective
because ha = ka simplifies to h = k by group cancellation. po surjective since
if y ∈ G with y ∼ a, then ya−1 = h for some h ∈ H, and thus pa(x) = y has a
solution x = h. ha = (ya−1)a = y.
Therefore each equivalence class has m elements, and it partitions G equally,

so n = mt.

Corollary 1.81

Any group of prime order is cyclic.

§1.14 Constructing Examples

There can be multiple groups of a certain order. For example Z6 has order 6,
and so does

S3 = {e, a, a2, b, ab, a2b | a3 = e, b2 = e, ba = a2b},

where a = (1, 2, 3), b = (1, 2).

Definition 1.82. Suppose that S, T ⊆ G, where G is a group. Then the
set-theoretic product of S, T is defined as

ST := {x ∈ G | x = st, s ∈ S, t ∈ T}.

Same applies for subgroups.

Proposition 1.83

Let G be a group with H,K ≤ G. If h−1kh ∈ K∀h ∈ H, k ∈ K, then
HK ≤ G.

Proposition 1.84 (Direct Product Groups)

Operation for product of groups is

(a, b)(c, d) = (ac, bd).

If a1 ∈ G1 and a2 ∈ G2 have orders m,n respectively, then (a1, a2) ∈
G1 ×G2 has order [m,n].

Example 1.85. Klein four-group is Z2 × Z2.
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Example 1.86. Z2 × Z3 is cyclic, but Z2 × Z4 is not.

Proposition 1.87

Let F be field. Then GLn(F ) is a group under matrix multiplication.

Proof. Suppose A,B are invertible matrices. Then (A−1)−1 = A and (AB)−1 =
B−1A−1 hold, meaning that elements have inverses, and is closed under matrix
multiplication.

Example 1.88. GL2(C) is the quaternion group, where

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
j =

[
0 1
−1 0

]
k =

[
0 i
i 0

]
.

We verify that i2 = j2 = k2 = −1, and ij = k, jk = i, ki = j. This group is not
abelion nor cyclic, as |−1| = 2, but |±i| = |±j| = |±k| = 4 (|g| means the order of
g, not the absolute value).

Definition 1.89. If S ⊆ G with S nonempty, a finite product of elements of S
and their inverses is called a word in S. The set of all words is denoted ⟨S⟩.

Proposition 1.90

If S ⊆ G and nonempty, then ⟨S⟩ ≤ G, and is the intersection of all groups
that contain S.

§1.15 Isomorphisms

If there is a bijection between elements of groups and operations are preserved (i.e.
ϕ(a∗b) = ϕ(a)·ϕ(b)), we call that an isomorphism. ϕmust be bijective.

Proposition 1.91

The inverse of a group isomorphism is a group isomorphism. The compostion
of two group isomorphisms is a group isomorphism.

Proposition 1.92

Let ϕ : G1 → G2 be an ismorphism. If a ∈ G has order n, then |ϕ(a)| = n.
If G1 abelian or cyclic, then so is G2.
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Example 1.93. R ̸∼= R×, since |−1| = 2 in R×, but the only value that satisfies
2x = 0 in R is x = 0, the identity.

Proposition 1.94

Let ϕ : G1 → G2 be a function such that ϕ(ab) = ϕ(a)ϕ(b). ϕ is injective
⇐⇒ ϕ(x) = e =⇒ x = e∀x ∈ G1.

§1.16 Cyclic Groups

Theorem 1.95

Every subgroup of a cyclic group is cyclic.

Proof. (sketch) Find smallest element, s. Claim: the subgroup is generated by s.
Use the fact that k = mq + r with k being the smallest power that could be the
order of s.

Corollary 1.96

If m, k | n, then ⟨am⟩ ⊆
〈
ak
〉

⇐⇒ k | m.

Proof. Suppose that k | m =⇒ m = kq, then am = (ak)q ∈
〈
ak
〉
. Therefore

⟨am⟩ ⊆
〈
ak
〉
.

Conversely, assume ⟨am⟩ ⊆
〈
ak
〉

=⇒ am ∈
〈
ak
〉

=⇒ m ≡ kt (mod n) for
t ∈ Z. It follows that m = kt+ nq for some q ∈ Z, so k | m.

The notation mZn will be used for the subgroup ⟨[m]⟩ in Zn.

Theorem 1.97 (Finite Cyclic Group Structure Theorem)

If n = pa11 p
a2
2 · · · pann

Zn ∼=
n

×
i=1

Zpaii .

Definition 1.98. ∃N for a group G such that aN = e∀a ∈ G. The smallest such
N is called the exponent of G.

Lemma 1.99

If a, b ∈ G with ab = ba, and the orders of a, b are relatively prime, then
o(ab) = o(a)o(b).
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Proof. Let o(a) = n, o(b) = m, then (ab)mn = amnbmn = e. Therefore ab has
finite order. If that order is k, then k | mn. (ab)k = e =⇒ ak = b−k. So
akm = (bm)−k = e, so n | km. Since (n,m) = 1, we have n | k. A similar
argument shows that m | k, then mn | k. So k = mn.

Proposition 1.100

Given G is finite abelian group. Exponent of G is equal to the order of any
element of G of largest order. The group G is cyclic ⇐⇒ its exponent is
equal to its order.

§1.17 Permutation Groups

Definition 1.101. Any subgroup of the symmetric group Sym(S) on a set S is
called a permutation group.

Theorem 1.102 (Cayley’s Theorem)

Every group is isomorphic to a permutation group.

Proof. Let G be any group. Define λa (for a ∈ G) as

λa(x) = ax.

Then λa is surjective and injective, so we can conclude that it is a permutation
of G. So ϕ : G→ Sym(G) defined by ϕ(a) = λa is well-defined.
Next we show that

Gλ = ϕ(G) ≤ Sym(G).

We first need the fact that λaλb = λab. Also, (λa)
−1 = λa−1 . This shows that Gλ

is closed and has identity and inverses. So it is a subgroup.
ϕ clearly preserve products. To finish showing that ϕ : G→ Gλ is an isomor-

phism, we need to show that it is injective. It is surjective by definition of Gλ. It
is easy to show that ϕ(a) = ϕ(b) =⇒ a = b because λa(e) = λb(e).
In conclusion we found that Gλ ≤ Sym(G) and isomorphism ϕ : G → Gλ

defined by assigning each a ∈ G to permutation λa.

Example 1.103. The rigid motions of an equilateral triangle yield the group S3.

Example 1.104 (General Case - Rigid Motion of n-gon). Consider the set

S = {ak, akb | 0 ≤ k < n, an = e, b2 = e},

moreover we see that bab = a−1 =⇒ ba = a−1b.
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Example 1.105. Here is a visualization of the subgroups of S3:

S3

{e, a, a2} {e, b} {e, ab} {e, a2b}

{e}

Proposition 1.106

The set of all even permutations on Sn is a subgroup of Sn.

Proof. For any two permutations that are even, their product must also be even.
This shows that it is closed. The identity is even, which is good. Also since Sn is
finite, it is clear that it is a subgroup.

Definition 1.107. The alternating group is An, consisting of all even permu-
tations in Sn.

We can now use a new polynomial definition to prove that even permutations
are always even and odd always odd, regardless of their presentation. Consider
the polynomial

∆n =
∏

1≤i<j≤n
(xi − xj).

If we let a permutation act on the the values of i, j, then the polynomial either
stays the same or negates.

Theorem 1.108

A permutation σ ∈ Sn is even ⇐⇒ ∆n = σ(∆n).

Proof. Let X = {∆n,−∆n}. Let σ̂ : X → X by

σ̂(∆n) =
∏

1≤i<j≤n
(xσ(i) − xσ(j)),

and
σ̂(−∆n) = −

∏
1≤i<j≤n

(xσ(i) − xσ(j)).

We show that any transposition τ = (r, s) has τ̂(∆n) = −∆n. If we assume that
r < s, this is clear by showing that the term

(xτ(r) − xτ(s)) = (xs − xr) = −(xr − xs).

Then it reduces to showing the cases i > s, r < i < s, i < r, which is easy to
prove.
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Since we can write any permutation out of transpositions, we have

σ̂(∆n) = (−1)k∆n,

where σ can be written in k transpositions.
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§2 Semester 2

§2.1 Homomorphisms

Definition 2.1. A homomorphism is a function ϕ : G→ H such that ϕ(ab) =
ϕ(a)ϕ(b)∀a, b ∈ G.

Proposition 2.2

Let ϕ : G1 → G2 be a homomorphism.

1. ϕ(e) = e

2. ϕ(a−1) = (ϕ(a))−1

3. ϕ(an) = (ϕ(a))n

4. (|ϕ(a)|) | a

Example 2.3 (Parity of a Permutation). Let G = {±1} ≤ Q×. ϕ : Sn → G is a
homomorphism defined as ϕ(σ) = 1 if even permutation and ϕ(σ) = −1 if odd
permutation.

Definition 2.4. The kernel of a homomorphism ϕ, denoted ker(ϕ) is all elements
that map to e.

Proposition 2.5

Suppose ϕ has K = ker(ϕ),

1. K ≤ G such that gkg−1 ∈ K∀k ∈ K, g ∈ G.

2. ϕ is injective ⇐⇒ K = {e}.

Definition 2.6. H is called the normal subgroup of G if ghg−1 ∈ H.

Proposition 2.7

For ϕ,

1. If H1 ≤ G then ϕ(H1) ≤ G. If ϕ is surjective and H1 ⊴ G1, then
ϕ(H1) ⊴ G2.

2. If H2 ≤ G2, then

ϕ−1(H2) = {x ∈ G | ϕ(x) ∈ H2},

is a subgroup of G. If H2 ⊴ G2, then ϕ
−1(H2) ⊴ G1.
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Proposition 2.8

With our homomorphism ϕ, the multiplication of equivalence classes in G1/ϕ
is well-defined, and G1/ϕ is a group. The natural projection π : G1 → G1/ϕ
defined as π(x) = [x]ϕ is a homomorphism.

Theorem 2.9

With our homomorphism ϕ : G1 → G2,

ϕ : G1/ϕ→ ϕ(G1),

with ϕ([a]ϕ) = ϕ(a) exists as an isomorphism.

Proof. To show ϕ is well defined and injective, notice that [a]ϕ = [b]ϕ ⇐⇒
ϕ(a) = ϕ(b) ⇐⇒ ϕ([a]ϕ) = ϕ([b]ϕ). The image of G1/ϕ is

{ϕ([a]ϕ) | a ∈ G1} = {ϕ(a) | a ∈ G1} = ϕ(G1).

so ϕ is surjective. Finally, function is preserved,

ϕ([a]ϕ)ϕ([b]ϕ) = ϕ(a)ϕ(b) = ϕ(ab) = ϕ([ab]ϕ) = ϕ([a]ϕ[b]ϕ).

Example 2.10 (Cayley’s Theorem). Let ϕ : G → Sym(G) by ϕ(a) = λa with
λa(x) = ax∀x ∈ G. After showing that λa is a bijection, we can use the fact that ϕ
is a homomorphism (λaλb = λab) and the fact that λa is an identity permutation
only if a = e, meaning ker(ϕ) = {e}. Thus G is isomorphic to ϕ(G), a permutation
group.

Proposition 2.11

Let ϕ : G1 → G2 be a homomorphism with a, b ∈ G1. All of the following
statements are equivalent.

1. ϕ(a) = ϕ(b)

2. ab−1 ∈ ker(ϕ)

3. ∃k ∈ ker(ϕ), a = kb

4. b−1a ∈ ker(ϕ)

5. ∃k ∈ ker(ϕ), a = bk.
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§2.2 Cosets, Normal Subgroups, Factor Groups

Proposition 2.12

bH = aH ⇐⇒ bH ⊆ aH ⇐⇒ b ∈ aH ⇐⇒ a−1b ∈ H.

Corollary 2.13

If H ≤ G, the relation ∼ defined on G as a ∼ b if aH = bH∀a, b ∈ G is an
equivalence relation on G.

Since equivalence classes partition G, we now are able to separate the group into
a bunch of sets.

Definition 2.14. For H ≤ G and a ∈ G,

aH = {x ∈ G | x = ah for some h ∈ H},

is called the left coset; right coset is the other way around.
The number of left cosets of H in G is called the index of H in G, denoted

[G : H].

Additionally, [G : H] = |G| / |H|, since all left cosets have the same size (proof
sketch: consider f : H → aH, and show it is bijective).

Proposition 2.15 (Multiplication of Left Cosets is Well-Defined)

If N is normal in G, then for a, b, c, d ∈ G, aN = cN and bN = dN =⇒
abN = cdN .

Proof. The statement implies a−1c ∈ N and b−1d ∈ N . Since N is normal,
d−1(a−1c)d ∈ N , but since b−1d ∈ N , (ab)−1cd = (b−1d)(d−1a−1cd) ∈ N . There-
fore abN = cdN as desired.

Theorem 2.16

If N is a normal subgroup of G, then the set of left cosets of N forms a
group under coset multiplication:

aNbN = abN, ∀a, b ∈ G.

Proof. Identity is N = eN . The inverse of aN is a−1N because aNa−1N = eN
and a−1NaN = eN . For associativity,

(aNbN)cN = abNcN = (ab)cN = a(bc)N = aNbcN = aN(bNcN).

Definition 2.17. The factor group of G is the group of all left cosets of N , a
normal subgroup to G. Denoted G/N .
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Proposition 2.18

Let N be a normal subgroup of G:

1. The natural projection π : G→ G/N , defined as π(x) = xN∀x ∈ G
is a homomorphism and ker(π) = N .

2. There is a bijection between subgroups of G/N and subgroups H of G
with H ⊇ N . If K ≤ G/N , then π−1(K) is the corresponding subgroup
of G. Similarly, if H ≤ G with H ⊇ N , then π(H) is the corresponding
subgroup of G/N .

Normal subgroups correspond to normal subgroups.

Proposition 2.19

Let H ≤ G. H ⊴ G ⇐⇒ aH = Ha∀a ∈ G ⇐⇒ ∀a, b ∈ G, abH is the set
theoretic product (aH)(bH) ⇐⇒ (∀ab−1 ∈ H ⇐⇒ a−1b ∈ H).

Example 2.20 (Normal Subgroups of S3). The only normal subgroup of S3 is {e},
S3, and {b, ab, ab}. Proof: casework on all the other subgroups, sorry!

Subgroups of index 2 are always normal!

Theorem 2.21 (Fundamental Homomorphism Theorem)

If ϕ : G1 → G2 is a homomorphism with K = ker(ϕ), then G1/K ∼= ϕ(G1).

Proof. Function used: ϕ : G1/K → ϕ(G1) by ϕ(aK) = ϕ(a).

Definition 2.22. The nontrivial group G is called simple if it has no proper
nontrivial normal subgroups.

Example 2.23. With the homomorphism ϕ : Zn → Zm by ϕ([x]n) = [x]m.

ker(ϕ) = {[x]n | [x]m = [0]m} = {[x]n | x is a multiple of m},

which means that ker(ϕ) = mZn. Therefore Zn/mZn
∼= Zm.

Anther useful takeaway involving the direct product on normal subgroups,

(G1 ×G2)/(N1 ×N2) ∼= (G1/N1)× (G2/N2).
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Example 2.24. Define ϕ : GLn(R) → R× by ϕ(A) = det(A). It is easy to prove
that this is a homomorphism. ker(ϕ) is SLn(R), which is a normal subgroup. So
GLn(R)/ SLn(R) ∼= R×.

§2.3 Chapter 3 End Remarks

In 1870, Kronecker came up with the definition of commutative groups, and in
1893 Heinrich Weber came up with the general case.
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§2.4 CHAPTER 4: Polynomials

Proofs and methods from chapter 1 involving integers can be extended into
polynomials as well, and will be covered. Typically, the fields covered will be
Q,R,C, and Zp, where p is prime.

§2.5 Fields; Roots of Polynomials

Roots are found until they are all contained in the smallest possible field E such
that Q ⊆ E ⊆ C.

Definition 2.25. A field has to be closed, associative, commutative, dis-
tributive, have a additive/multiplicative identity, and additive/multiplicative
inverses.

Proposition 2.26

For a field F ,

1. ∀a ∈ F, a · 0 = 0

2. a, b ∈ F, a ̸= 0, b ̸= 0 =⇒ ab ̸= 0

3. ∀a ∈ F,−(−a) = a

4. ∀a, b ∈ F, a(−b) = (−a)b = −ab

5. (−a)(−b) = ab.

Definition 2.27. A polynomial over a field F is what you expect. Notable
terms: indeterminate is x. The polynomial is constant if a0 is leading
coefficient. Denoted F [x].

A zero polynomial (f(x) = 0) has degree −∞.

Example 2.28 (Polynomials over Z5). Recall by Fermat’s theorem, c5 ≡ c (mod 5),
so really, f(x) = x5 and g(x) = x are really the same.

Moreover, x5 − 2x+ 1 ≡ −c+ 1 ≡ 4c+ 1 (mod 5).

Covers basic polynomial stuff. f(x)g(x) = f(x)h(h) =⇒ g(x) = h(x) when
f(x) ̸= 0. Divisor of a polynomial is when you can write f(x) = q(x)g(x) for
some q(x) ∈ F [x].

Lemma 2.29

For any element c ∈ F ,
(x− c) | (xk − ck).

Proof. (xk − ck) = (x− c)(xk−1 + cxk−2 + · · ·+ ck−2x+ ck−1).
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Theorem 2.30 (Remainder Theorem)

Given f(x) ∈ F [x], f(x) ̸= 0, let c ∈ F . ∃q(x) ∈ F [x] such that

f(x) = q(x)(x− c) + f(c).

Moreover, if f(x) = q1(x)(x− c) + k, where q1(x) ∈ F [x], and k ∈ F , then
q1(x) = q(x) and k = f(c).

Proof.
f(x)− f(c) = am(x

m − cm) + · · ·+ a1(x− c).

But the last lemma tells us that (x− c) divides all the terms, so

f(x)− f(c) = q(x)(x− c) ⇐⇒ f(x) = q(x)(x− c) + f(c).

If f(x) = q1(x)(x− c) + k, then

(q(x)− q1(x))(x− c) = k − f(c).

But the RHS is constant, so q(x)− q1(x) = 0 =⇒ k− f(c) = 0, and the quotient
and remainder are unique.

Corollary 2.31

c is a root of f(x) ∈ F [x] ⇐⇒ (x− c) | f(x).

Corollary 2.32

A polynomial of degree in n in the field F has at most n distinct roots in F .

§2.6 Factors

Theorem 2.33 (Division Algorithm)

For polynomials f(x), g(x) ∈ F [x], with g(x) ̸= 0, ∃q(x), r(x) ∈ F [x] such
that

f(x) = q(x)g(x) + r(x),

and either deg(r) < deg(g) or r(x) = 0.

Proof. Use polynomial long division inductively. To show they are unique, let

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x),

=⇒ (q1(x)− q2(x))g(x) = r2(x)− r1(x).

When we check the degree of r1, r2, we find that they must be equal to the degree of
(q1(x)− q2(x))g(x), but that is contradiction, forcing us to have q1(x)− q2(x) = 0.
r1 = r2, q1 = q2.
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Theorem 2.34

Let I ⊆ F [x] such that

1. I contains nonzero polynomial

2. f(x), g(x) ∈ I =⇒ f(x) + g(x) ∈ I

3. f(x) ∈ I, q(x) ∈ F [x] =⇒ q(x)f(x) ∈ I.

If d(x) is any nonzero polynomial in I of minimal degree, then

I = {f(x) ∈ F [x] | f(x) = q(x)d(x) for some q(x) ∈ F [x]}.

Definition 2.35. A monic polynomial d(x) ∈ F [x] is called the greatest common
divisor of f(x), g(x) ∈ F [x] if

1. d(x) is a divisor of both f(x) and g(x)

2. any divisor of both f(x) and g(x) is also a divisor of d(x).

Theorem 2.36

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x) for some a(x), b(x) ∈ F [x].

Proof.
I = {a(x)f(x) + b(x)g(x) | a(x), b(x) ∈ F [x]}

satisfies the conditions of the last theorem. Since f(x), g(x) ∈ I, we have
d(x) | f(x), g(x). Since d(x) is some linear combination of f(x) and g(x), it
follows that if h(x) | f(x), g(x), then h(x) | d(x).

Example 2.37. Find gcd(2x4 + x3 − 6x2 + 7x− 2, 2x3 − 7x2 + 8x− 4) over Q.
Dividing the higher degree by the lower, we find that the quotient is x+ 4 and

remainder 14x2 − 21x+ 14 =⇒ 2x2 − 3x+ 2.

gcd(2x3 − 6x2 + 8x− 4, 2x2 − 3x+ 2).

Dividing again gives quotient x − 2 and no remainder, so the gcd is x2 − 3
2x + 1

(divided so monic).

Proposition 2.38

p, f, g ∈ F [x]. If gcd(p, f) = 1, and p | fg, then p | g.

Definition 2.39. A nonconstant polynomial is irreducible over the field F
if it cannot be factored in F [x] into a product of polynomials of lower degree.
reducible over F is one exists.
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Proposition 2.40

A polynomial of degree 2 or 3 is irreducible over F ⇐⇒ it has not roots in
F .

Lemma 2.41

The nonconstant polynomial p ∈ F [x] is irreducible over F ⇐⇒ ∀f, g ∈ F [x],
p(x) | (f(x)g(x)) =⇒ p(x) | f(x) or p(x) | g(x).

Theorem 2.42 (Unique Factorization)

Any nonconstant polynomial with coefficients in the field F can be expressed
as some element in F times irreducible monic polynomials.

Proposition 2.43

A nonconstant polynomial f(x) over R has no repeated factors ⇐⇒
gcd(f(x), f ′(x)) = 1.

Proof. Change to showing f only has repeated factor over R ⇐⇒ gcd(f(x), f ′(x)) ̸=
1. So gcd(f(x), f ′(x)) = d(x). Then f(x) = a(x)p(x) and f ′(x) = b(x)p(x) for
some irreducible factor p of d. Note that

f ′(x) = a′(x)p(x) + a(x)p′(x) = b(x)p(x) =⇒ p(x) | a(x)p′(x).

Thus p(x) | a(x), since p is irreducible and p ∤ p′. Therefore f(x) = c(x)p(x)2 for
some c(x) ∈ F [x], and so f(x) has a repeated factor.
Conversely, f(x) = g(x)nq(x) with n > 1 means that

f ′(x) = ng(x)n−1g′(x)q(x) + g(x)nq′(x).

So g is a common divisor of f and f ′.

§2.7 Existence of Roots

Definition 2.44. If E,F are fields and F ⊆ E, then F is a subfield of E and
E a extension field of F .

Definition 2.45. The set of all congruence classes modulo p(x) will be denoted
F [x]/ ⟨p(x)⟩.

Proposition 2.46

Let F be a field, let a(x), p(x) ∈ F [x] with p(x) nonzero. If p(x) is not a
factor of a(x), then the congruence class [a(x)] modulo p(x) contains exactly
one polynomial r(x) with deg(r(x)) < deg(p(x)).
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Proposition 2.47

a[x] in te last proposition has a multiplicative inverse in F [x]/ ⟨p(x)⟩ ⇐⇒
gcd(a(x), p(x)) = 1.

Theorem 2.48

For a field F and nonconstant polynomial p, then F [x]/ ⟨p(x)⟩ is a field
⇐⇒ p(x) is irreducible over F .

Proof. We want to prove that F/ ⟨p(x)⟩ has multiplicative inverses if and only
if p(x) irreducible, since the rest of the requirements for fields are easy to show.
Each nonzero congruence class [a(x)] has a multiplicative inverse if and only if
gcd(a(x), p(x)) = 1 for all nonzero polynomials a(x) with deg(a(x)) < deg(p(x)).
This occurs if and only if p(x) is irreducible.

Example 2.49 (Construction of Complex Numbers). Since x2 + 1 is irreducible in
R, we have R[x]/

〈
x2 + 1

〉
being a field. Each of the elements is bijective to some

a+ bx. So then the mapping

ϕ : R[x]/
〈
x2 + 1

〉
→ C

defined as
ϕ([a+ bx]) = a+ bi

is an isomorphism. Since x2 ≡ −1 (mod x2 + 1), this is constructs the complex
plane.

Theorem 2.50 (Kronecker)

Let F be field, and f(x) any nonconstant polynomial in F [x]. ∃ an extension
field E of F and an element u ∈ E such that f(u) = 0.

Proof. f(x) is a product or irreducible polynomials. Since F [x]/ ⟨p(x)⟩ is field,
we can denote it E. F is isomorphic to a subfield of E consisting of all congruence
classes [a] with a ∈ F . Let u be the congruence class [x].

p(u) = an([x])
n + · · ·+ a1([x]) + a0 = [anx

n + · · ·+ a1x+ a0] = [0],

since p(x) ≡ 0 (mod p(x)).

Corollary 2.51

If f(x) ∈ F [x], then there exists an extension field E over which f(x) can be
factored into a product of linear factors.
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Example 2.52. For the polynomial x4−x2−2, we have the factors (x2−2)(x2+1) inQ.
Firstly, let E1 = Q[x]/

〈
x2 − 2

〉
, isomorphic to Q(

√
2). Then let E2 = E1/

〈
x2 + 1

〉
.

This field is Q(
√
2, i).

§2.8 Polynomials over Z,Q,R,C

For any root c of a polynomial f(x), we must have (c− n) | f(n). This fact can
be used to find rational roots faster; if a value does not satisfy this, we can toss
it out.

Definition 2.53. A polynomial with integer coefficients is called primitive if 1
and −1 are the only common divisors of its coefficients.

The gcd of the coefficients of a polynomial p(x) is called the content of p(x).
Reminder that the index of a coefficient ai in a polynomial is the i.

Lemma 2.54

Let p be a prime number, and f(x) = g(x)h(x), where f(x) = amx
m + · · ·+

a1x+ a0, g(x) = bnx
n + · · ·+ b1x+ b0, and h(x) = ckx

k + · · ·+ c1x+ c0. If
bs, ct are the coefficients of least index not divisible by p, then as+t is the
coefficient of least index not divisible by p.

Proof.

as+t = b0cs+t + · · ·+ bs−1ct+1 + bsct + bs+1ct−1 + · · ·+ bs+tc0.

All terms b0, . . . , bs−1 and ct−1, . . . , c0 are divisible by p by assumption.
Any term smaller p | ak =

∑k
i=0 bick−i

Theorem 2.55 (Gauss’ Lemma)

Product of two primitive polynomials is primitive.

Proof. Use the last lemma; since for any p, we can find a coefficient of f(x) =
g(x)h(x) that does not divide it, we conclude f(x) is primitive.

Theorem 2.56 (Eisenstein’s Irreducibility Criterion)

f(x) = anx
n + · · · a1x+ a0,

be a polynomial with integer coefficients. If there exists a prime number p
such that

an−1 ≡ an−2 ≡ · · · ≡ a0 ≡ 0 (mod p),

but an ̸≡ 0 (mod p) and a0 ̸≡ 0 (mod p2), then f(x) is irreducible over Q.
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To show that p(x) is irreducible, it suffices to show that p(x+ c) is irreducible
for some integer c. You cannot apply Eisenstein’s Criterion to x2 + 1, but you
can if you replace x with x+ 1.

Corollary 2.57

If p prime, then
Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Proof. Note that

Φp(x) =
xp − 1

x− 1
,

so

Φp(x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

(
p

1

)
xp−2 + · · ·+ p.

So all an−1 . . . a0 are divisible by p, but an is not, and a0 is not divisible by p2,
thus meeting Eisenstein’s criterion.

Therefore p being prime gives us

xp − 1 = (x− 1)(xp−1 + · · ·+ 1),

but not necessarily for composite numbers:

x4 − 1 = (x− 1)(x+ 1)(x2 + 1).

Definition 2.58. A complex nth root of unity is said to be primitive is it is
a root of a polynomial xn − 1 but not a root of xm − 1 for any positive integer
m < n.

Proposition 2.59

If f(x) ∈ R[x], then any complex root z must have its conjugate z as a root.

Theorem 2.60

Any polynomial of positive degree in R[x] can be factored into a product of
linear and quadratic terms with real coefficients.

Proof. Factor out roots in R. For each complex one, it has a conjugate, so make
that quadratic ((x− z)(x− z)).

In R[x], irreducible polynomials must be either

1. ax+ b with a ̸= 0, or

2. ax2 + bx+ c with a ̸= 0 and b2 − 4ac < 0.
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§2.9 Chapter 4 End Remarks

If only positive coefficients and positive values of x were solutions to a cubic,
solutions to these equations would suffice:

x3 + px = q (2.1)

x3 = px+ q (2.2)

x3 + q = px (2.3)

The first was solved in 1526 by Scipione del Ferro. The second and third were
solved by Cardano. but he swore to not reveal it. Lodovico Ferrari extended it
to a general fourth degree equation. He published his solution with Ferrari in
Ars Magna (1545), and got in a dispute with Tartaglia, the person he swore an
oath with.

§3 Semester 3

§3.1 CHAPTER 5: Commutative Rings

Many group ideas can be extended to rings. There exist factor groups in rings:
factor rings. Normal subgroups are like ideals. Ending part is on constructing
quotient fields for integral domains, characterizing all subrings of fields.

§3.2 Commutative Rings; Integral Domains

Example 3.1. Key Rings to Know: Z,Zn, any field F (i.e. Q,R), F [x].

There is an underlying additive group for any ring R, just by the fact that
the ring exists.

Definition 3.2. R is a commutative ring if it is closed, associative, com-
mutative, distributive, additive and multiplicative identity, additive
inverse.

1 ̸= 0 is not required in a ring, therefore {0} is a ring (the zero ring). If
you prove multiplication is commutative, then you only need to show one of
the distributive properties. The cancellation law may fail for multiplication:
2 · 3 = 4 · 3 ⇏ 2 = 4 in Z6.

Definition 3.3. R ⊆ S is a subring of S if it is commutative under addition
and multiplication of S, and has the same identity as S.

Alternatively, you can show that (if R is commutative, a ∈ R =⇒ −a ∈ R,
and R contains identity of S) ⇐⇒ R is a subring of S.

Example 3.4 (Check that Identity Matches!). Let S = {0, 2, 4}. S ⊆ Z6 It can be
confirmed that S is a commutative ring, but since the identity is 4, it cannot be a
subring.
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Definition 3.5. a ∈ R is invertible if ∃b ∈ R such that ab = 1.
a is also called a unit of R and b is the multiplicative inverse of a (a−1).
An element a such that ab = 0 for some b ̸= 0 is called a divisor of zero.

Proposition 3.6

For any ring R, the set of all units, R× is an abelian group under multiplica-
tion.

The multiplication cancellation law holds if and only if R has no nonzero divisors
of zero.

Definition 3.7. A commutative ring R is called an integral domain if 1 ̸= 0
and ∀a, b ∈ R, ab = 0 =⇒ a = 0 or b = 0.

Example 3.8. If D is an integral domain, then D[x] is also one. To show this,
consider the leading coefficients.

Theorem 3.9

Any subring of a field is an integral domain.

Proof. Let R be a subring of F . It immediately inherits 1 ̸= 0. ab = 0 in R also
holds in F . If a = 0, we’re done. When a ̸= 0, ab = 0 in F can be multiplied by
inverse a on both sides, yielding b = 0.

Zn is an integral domain ⇐⇒ n prime, since n | ab =⇒ n | a or n | b, n
clearly must be prime. Why are integral domains and fields the same for Zn?
Well...

Theorem 3.10

Any finite integral domain must be a field.

Proof. Let D be a finite integral domain, and D∗ be the set without zero. If
d ∈ D and d ̸= 0, then multiplication by d defines a function f : D∗ → D∗,
f(x) = xd. f is clearly injective, but since it maps from a finite set to itself, it
also must be surjective. So 1 = f(a) for some a ∈ D∗, so ad = 1 for some a ∈ D,
and so each nonzero element of D is invertible.

§3.3 Ring Homomorphisms

Definition 3.11. A function ϕ : R→ S is a ring homomorphism if:

1. ϕ(a+ b) = ϕ(a) + ϕ(b),
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2. ϕ(ab) = ϕ(a)ϕ(b),

3. ϕ(1) = 1.

A ring isomorphism is when ϕ is also bijective. A ring automorphism
happens if ϕ maps R to itself.

Proposition 3.12

If ϕ, θ are ring isomorphisms: ϕ−1 is a ring isomorphism, θ ◦ ϕ is a ring
isomorphism.

a is a unit of R ⇐⇒ ϕ(a) is a unit of S, moreover, R is a field ⇐⇒ S is a
field.

Example 3.13 (Ring Homomorphism Examples). Some examples:

1. The natural projection, π : Z → Zn, defined as π(x) = [x]n.

2. The natural inclusion, ι : R→ R[x], defined as ι(a) = a.

3. ϕ : Q[x] → R by ϕ(f(x)) = f(
√
2). The image is Q(

√
2).

4. Evaluation mapping. Let F be a subfield of E. For any element u ∈ E, let
ϕ : F [x] → E be defined by ϕ(f(x)) = f(u).

Proposition 3.14

If ϕ : R→ S is a ring homomorphism, then ϕ(0) = 0, ϕ(−a) = −ϕ(a)∀a ∈ R,
and ϕ(R) is a subring of S.

Proposition 3.15

If ϕ : R→ S is a ring homomorphism, then

1. If a, b ∈ ker(ϕ), and r ∈ R, then a± b, ra ∈ ker(ϕ).

2. ϕ is an isomorphism ⇐⇒ ker(ϕ) = {0} and ϕ(R) = S.

Theorem 3.16 (The Fundamental Theorem of Ring Homomorphisms)

If ϕ : R→ S is a ring homomorphism, then R/ ker(ϕ) ∼= ϕ(R).

Sketch. θ : R/ ker(ϕ) → ϕ(R) defined as θ(a+ ker(ϕ)) = ϕ(a) works.
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Proposition 3.17

Let θ : R → S be a ring homomorphism. For s ∈ S, ∃ a unique homomor-
phism θ̂s : R[s] → S such that θ̂s(r) = θ(r)∀r ∈ R, and θ̂s = s.

This should be thought of as an evaluation mapping; if f(s) = 0, then s is a root.

Definition 3.18. The set of n tuples of rings R1, . . . , Rn is called the direct
sum and is denoted:

R1 ⊕R2 ⊕ · · · ⊕Rn.

A useful takeaway is that if n = pa11 p
a2
2 · · · pann , then we have

Zn ∼=
n⊕
i=1

Zpaii ,

but we also have

Z×
n
∼=

n⊕
i=1

Z×
p
ai
i

,

which I am still a little confused on.

Definition 3.19. The smallest positive integer n such that n · 1 = 0 (in R) is
called the characteristic of R, denoted char (R). If no such integer exists, then
R is said to have a characteristic zero.

We can think of char (R) as the exponent of the underlying additive group.
Moreover, we can consider the homomorphism ϕ : Z → R defined by ϕ(n) = n · 1.
The generator of ker(ϕ) is the characteristic.

Proposition 3.20

An integral domain has characteristic 0 or p, a prime.

Proof. Consider ϕ as defined before for an integral domain D. The fundamental
theorem for ring homomorphisms shows that Z/ ker(ϕ) is isomorphic to the
subring ϕ(Z) of D. But ϕ(Z) also has the property that it has no nontrivial
divisors of zero, and therefore must be an integral domain. Either ker(ϕ) =
0 =⇒ char (D) = 0, or ker(ϕ) = nZ. This means that n must be prime, so
char (D) is also prime.

§3.4 Ideals and Factor Rings

Definition 3.21. An ideal is a subset I of R such that

• a± b ∈ I∀a, b ∈ I,

• ra ∈ I∀a ∈ I, r ∈ R.

If 1 ∈ I, then it must be the whole ring R!
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Proposition 3.22

Let R be a commutative ring with 1 ̸= 0. Then R is a field ⇐⇒ it has no
proper nontrivial ideals.

Definition 3.23. Let R be a commutative ring, and a ∈ R. The ideal Ra is
called a principal ideal generated by a.
An integral domain where every ideal is principally generated is called a

principal ideal domain.

Example 3.24 (Polynomials Over a Field is a PID). If I is any nonzero ideal of F [x],
then f(x) is a generator for I ⇐⇒ it has a minimal degree among the nonzero
elements of I. Since the generator of I is a divisor of every element of I, there is
only one monic generator for I.

Definition 3.25. Let I be an ideal of a ring R. The ring R/I is called a factor
ring of R modulo I.

Proposition 3.26

Let I be an ideal of R.

1. The natural projection π : R→ R/I defined as π(a) = a+ I∀a ∈ R is
a ring homomorphism and ker(π) = I.

2. There is a bijection between ideals of R/I and ideals of R that contain
I.

That bijection is: For each ideal J of R/I, we assign the ideal π−1(J)
of R; to each ideal J of R, we assign the ideal π(J) of R/I.

Sketch. Addition parts follow from a previous proof. The multiplication follows
from definition of congruence classes.
If J is an ideal of R that contains I, then it corresponds to the additive

subgroup
π(J) = {a+ I | a ∈ J}.

Group things follow. On the other hand, if J is an ideal of R/I, then it corresponds
to the subgroup

π−1(J) = {a ∈ R | a+ I ∈ J}.

Example 3.27. Let R = Q[x, y], and let I = ⟨y⟩. In forming R/I, we make the
elements of I congruent to 0. We can find a definition as ϕ(f(x, y)) = f(x, 0).
It is clear that ker(ϕ) = ⟨y⟩ . Q[x, y]/ ⟨y⟩ ∼= Q[x] by fundamental theorem of
homomorphisms of rings.
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Definition 3.28. An proper ideal I of a commutative ring R is a prime ideal
if for all a, b ∈ R it is true that ab ∈ I =⇒ a ∈ I or b ∈ I.
I is said to be a maximal ideal of R if for all ideals J of R, such that

I ⊆ J ⊆ R, either J = I or J = R.

We can see that if R is a ring with 1 ̸= 0, then R is an integral domain ⇐⇒ the
the trivial ideal is the only prime ideal. In Z, the trivial ideal is prime but not
maximal.

Example 3.29. Let ϕ : R → S be a ring isomorphism. Let I be any ideal of R.
Let π be the natural projection from S onto S/ϕ(I). Consider ϕ = πϕ. Then ϕ is
surjective since both π and ϕ are, and

ker(ϕ) = {r ∈ R | ϕ(r) ∈ ϕ(I)} = I.

Therefore R/I ∼= S/ϕ(I).

Proposition 3.30

Let I be a proper ideal of the commutative ring R.

1. R/I is a field ⇐⇒ I is a maximal ideal of R

2. R/I is an integral domain ⇐⇒ I is a prime ideal of R

3. If I is a maximal ideal, then it is a prime ideal.

Proof. (1) Since I is a proper ideal of R, it does not contain 1. Therefore
1 + I ̸= 0 + I.

R/I is a field ⇐⇒ it has no proper nontrivial ideals

⇐⇒ there are no ideals properly between I and R

⇐⇒ I is maximal.

(2) ( =⇒ ) Let a, b ∈ R with ab ∈ I. Assume R/I is an integral domain. For
cosets of R/I, we have (a + I)(b + I) = ab + I = 0 + I. By assumption, this
means either a+ I or b+ I is the zero coset. So either a ∈ I or b ∈ I, so I is a
prime ideal.
(⇐=) Assume that I is a prime ideal. Then a, b ∈ R, such that (a+ I)(b+ I) =

0 + I in R/I =⇒ ab ∈ I. So by assumption a ∈ I or b ∈ I. So a+ I or b+ I is
the zero coset, making R/I an integral domain.
(3) follows from the other two.

Ring isomorphisms preserve prime/maximal ideals.

Theorem 3.31

Every nonzero prime ideal of a principal ideal domain is maximal.
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Proof. Let P be a nonzero prime ideal of PID R, and J be any ideal with P ⊆
J ⊆ R. We can assume P = Ra and J = Rb since R is a PID. a ∈ P =⇒ a ∈ J ,
so a = rb for some r ∈ R. So rb ∈ P ; either b ∈ P or r ∈ P , since P is
prime. If b ∈ P , then it can be principally generated by b, so P = J . Otherwise,
r ∈ P =⇒ r = sa for some s ∈ R. So a = sab. Since R is an integral domain,
this reduces to 1 = sb. Shows that 1 ∈ J =⇒ J = R.

Example 3.32 (Ideals of Polynomials). Let F be any field. The nonzero ideals of
F [x] are all principal, of the form ⟨f(x)⟩, where f(x) is any polynomial of minimal
degree in the ideal. The ideal is prime (and hence maximal) ⇐⇒ f(x) irreducible.
Therefore if p(x) is irreducible, then F [x]/ ⟨p(x)⟩ is a field.

Example 3.33 (Kernel and Image of the Evaluation Mapping). Let F be a subfield of
E. Let the evaluation mapping be defined for u ∈ E as:

ϕu : F [x] → E ϕu(f(x)) = f(u).

ϕu defines a ring homomorphism.
Also, ϕu(F [x]) is a subring of E, and therefore an integral domain.
This image is isomorphic to F [x]/ ker(ϕu), so ker(ϕu) is a prime ideal.
As long as this is nonzero, it is a maximal ideal as well.
Therefore we conclude that F [x]/ ker(ϕu) is a field, so the image of ϕu is a subfield

of E.

§3.5 Quotient Fields

The goal is to show that any integral domain is isomorphic to a subring of a field.
The next step is constructing ”fractions” with numerator and denominator in an
integral domain D.

Lemma 3.34

Let D be an integral domain, and

W = {(a, b) | a, b ∈ D and b ̸= 0}.

The relation ∼ for W defined by (a, b) ∼ (c, d) if ad = bc is an equivalence
relation.

We will denote each class (a, b) by [a, b], and the set of all classes by Q(D).

Lemma 3.35

The operations for Q(D) are

[a, b] + [c, d] = [ad+ bc, bd] [a, b] · [c, d] = [ac, bd],

and are well-defined.
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Theorem 3.36

Let D be an integral domain. Then Q(D) is a field that contains a subring
isomorphic to D.

Proof. We first need to show that Q(D) is a field, which is easy to see.
Consider the mapping ϕ : D → Q(D) defined by ϕ(d) = [d, 1]∀d ∈ D. ϕ clearly

preserves sums and products. ϕ(1) = [1, 1], the identi ty of Q(D), so ϕ is a ring
homomorphism. ker(ϕ) can only be {0}. Therefore ϕ(D) is a subring of Q(D)
that is isomorphic to D.

Definition 3.37. Q(D) is called the field of quotients/fractions of an integral
domain D.

Theorem 3.38

For ϕ as defined in the last theorem, if there is a function θ : D → F that
is injective to a field F , then there exists a unique ring homomorphism
θ̂ : Q(D) → F that is injective, such that θ̂ϕ(d) = θ(d)∀d ∈ D.

D Q(D)

F

ϕ

θ θ̂

Proof. For [a, b] ∈ Q(D), let θ̂([a, b]) = θ(a)θ(b)−1. Need to show that it is well
defined, and unique.

Change in notation: using a/b instead of [a, b] for the equivalence classes of
Q(D).

Corollary 3.39

Let D be an integral domain that is a subring of a field F . If each element
has the form a/b for a, b ∈ D, then F ∼= Q(D).

Example 3.40. Let D be the integral domain of all fractions a/b ∈ Q such that n is
odd. If for a/b, gcd(a, b) = 1, then either they are both odd, meaning a/b ∈ D, or b
is even, meaning that (a/b)−1 = b/a ∈ D. Therefore Q ∼= Q(D).

Corollary 3.41

Any field contains a subfield isomorphic to Q or Zp.
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Proof. Let F be any field, and let ϕ : Z → F be defined by ϕ(n) = n · 1. If
ker(ϕ) ̸= {0}, then it is pZ for some prime p. So the image is a subfield isomorphic
to Zp.

If ϕ is injective, then the last theorem tells us there is a homomorphism from
Q(Z), or Q into F . The image is a subfield of F isomorphic to Q in this case.

§3.6 Chapter 5 End Remarks

Terminology for these structures came from a paper in 1897 by David Hilbert(1862-
1943). He recognized that ideal theory was closely related to algebraic geometry.
Many abstract algebra discoveries were made by Emmy Noether (1882-1935).
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