Chapter 8: Fields, Section 2: Multiplicity of Roots

1. Proof. Let F be the extension field for $p(x)$ over K. Since K is finite, it is perfect, and the roots for $p(x)$, which is irreducible, are all simple. We have shown that all roots of irreducible factors are simple, so $[F: K]=n$, implying the Galois group is \mathbb{Z}_{n} (since we have a simple extension of a finite field).
2. Solution. We can verify that $x^{4}-2$ has not roots in \mathbb{F}_{3}. Therefore it is irreducible. Since it is over a finite field, from Problem (1), the Galois group is \mathbb{Z}_{4}.
3. Solution. $x=1,-1$ are roots. We have $x^{4}+2=(x-1)(x+1)\left(x^{2}+1\right)$. Since $\left(x^{2}+1\right)$ is irreducible, the Galois group is \mathbb{Z}_{2}.
4. Solution. We can factor $x^{6}-1(x-1)(x+1)(x-3)(x+2)(x-3)(x+1)$. So the splitting field is \mathbb{F}_{7}, and the galois group is $\{1\}$.
5. Proof. Let M be the splitting field of F. Then we have that for any polynomial $f(x) \in F[x]$ has factorization $h(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots(x-$ $\left.\alpha_{n}\right) \in M[x]$. Since F is algebraic over K, we can represent $f(x)$ as a (possibly longer) polynomial $g(x) \in K[x]$. We have that $f(x) \mid g(x)$, since f 's roots are at least g 's roots. Since K is perfect, the irreducible factors in K only have simple roots. Since $f(x) \mid g(x)$, the irreducible factors in $f(x)$ also only have simple roots, and F is perfect.
6. Proof. Consider the minimal polynomial of any $\alpha \in F: g(x) \in K[x]$, and $f(x) \in E[x]$. When we split these polynomials in the splitting field of F, g 's roots are at least f 's roots, so $f(x) \mid g(x)$. Since F is separable over K, $g(x)$ only has simple roots, and therefore $f(x)$ does too. So F is separable over E.
7. Proof. Let $f, g \in K[x]$ for some field K. Let $t=\max \{\operatorname{deg}(f(x)), \operatorname{deg}(g(x))\}$, and define the polynomials as $f(x)=\sum_{k=0}^{t} a_{k} x^{k}, g(x)=\sum_{k=0}^{t} b_{k} x^{k}$.

$$
\begin{aligned}
f(x) \cdot g^{\prime}(x)+f^{\prime}(x) \cdot g(x) & =\sum_{k_{1}=0}^{t} \sum_{k_{2}=0}^{t} k_{2} a_{k_{1}} b_{k_{2}} x^{k_{1}+k_{2}-1}+\sum_{k_{1}=0}^{t} \sum_{k_{2}=0}^{t} k_{1} a_{k_{1}} b_{k_{2}} x^{k_{1}+k_{2}-1} \\
& =\sum_{k_{1}=0}^{t} \sum_{k_{2}=0}^{t} k_{2} a_{k_{1}} b_{k_{2}} x^{k_{1}+k_{2}-1}+k_{1} a_{k_{1}} b_{k_{2}} x^{k_{1}+k_{2}-1} \\
& =\sum_{k_{1}=0}^{t} \sum_{k_{2}=0}^{t}\left(k_{1}+k_{2}\right) a_{k_{1}} b_{k_{2}} x^{k_{1}+k_{2}-1} \\
& =(f \cdot g)^{\prime}(x) .
\end{aligned}
$$

8. Solution. By Theorem (8.2.8), we first find the minimal polynomial for each adjoined element, $x^{2}-2$ and $x^{2}+1$. We want to find a number $a \in \mathbb{Q}$ such that

- $\sqrt{2}+a i \neq \sqrt{2}-a i$,
- $\sqrt{2}+a i \neq-\sqrt{2}-a i$.
$a=1$ works. So the primitive element is $\sqrt{2}+a i=\sqrt{2}+i$.

$$
\begin{array}{c|c|c}
& x^{3}-1 & x^{3}-2 \\
\hline \text { Important roots } & u_{i}=1, \omega, \omega^{2} & v_{j}=\sqrt[3]{2} \omega, \sqrt[3]{2} \omega^{2}
\end{array}
$$

Table 1: Roots to consider for $u+a v \neq u_{i}+a v_{j}$
9. Solution. Let $u=\omega, v=\sqrt[3]{2}$. The roots we have to consider are the ones for $x^{3}-1$ and $x^{3}-2$, and are shown in table 1. We can see that $a=1$ works here as well, so the primitive element is $\omega+a \sqrt[3]{2}=\omega+\sqrt[3]{2}$.
10. Proof. Suppose some roots of f are in $\mathbb{C} \backslash \mathbb{R}$ for contraposition. Then F is a field extension of $\mathbb{Q}(i)$ as well. But then by multiplication of orders,

$$
[F: \mathbb{Q}]=[F: \mathbb{Q}(i)][\mathbb{Q}(i): \mathbb{Q}]=2[F: \mathbb{Q}(i)] .
$$

So $[F: \mathbb{Q}]$ is even.
11. Proof. Suppose that $x=y^{p}$ for $y \in K(x)$. Then

$$
\begin{aligned}
y^{p} x^{-1} & =1 \\
p \cdot y^{p} x^{-1} & =0 \\
y^{p} & =0=x .
\end{aligned}
$$

Which is nonsensical.
12. Proof. Let $f(x)=x^{p}-a$. If $\exists \alpha \in F$ s.t. $\alpha^{p}=a$, we have

$$
x^{p}-a=x^{p}-\alpha^{p}=(x-\alpha)^{p} .
$$

Showing that it is a p th power.
If α does not exist, let the splitting field of f be K. In other words, $\exists \beta \in K \backslash F$ such that $\beta^{p}=a$. Therefore in $K[x]$,

$$
f(x)=(x-\beta)^{p} .
$$

Since gcd is invariant under an extension field, we see that $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=$ $(x-\beta)^{p-1}$. So $(x-\beta)^{p-1} \in F[x]$. Then

$$
\left((x-\beta)^{p-1}\right)^{-1}(x-\beta)^{p}=(x-\beta) \in F[x],
$$

contradicting our assumption that $\beta \notin F$.
If I've made any errors or you have any other comments on these solutions, message me on Mathstodon.

Notation

- I write the Galois Field $\operatorname{GF}\left(p^{n}\right)$ as $\mathbb{F}_{p^{n}}$.

