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Chapter 8: Fields, Section 2: Multiplicity of Roots

1. Proof. Let F be the extension field for p(x) over K. Since K is finite, it
is perfect, and the roots for p(x), which is irreducible, are all simple. We
have shown that all roots of irreducible factors are simple, so [F : K] = n,
implying the Galois group is Zn (since we have a simple extension of a
finite field).

2. Solution. We can verify that x4 − 2 has not roots in F3. Therefore it is
irreducible. Since it is over a finite field, from Problem (1), the Galois

group is Z4 .

3. Solution. x = 1,−1 are roots. We have x4 + 2 = (x − 1)(x + 1)(x2 + 1).

Since (x2 + 1) is irreducible, the Galois group is Z2 .

4. Solution. We can factor x6 − 1(x− 1)(x+ 1)(x− 3)(x+ 2)(x− 3)(x+ 1).

So the splitting field is F7, and the galois group is {1} .

5. Proof. Let M be the splitting field of F . Then we have that for any
polynomial f(x) ∈ F [x] has factorization h(x) = (x− α1)(x− α2) · · · (x−
αn) ∈ M [x]. Since F is algebraic over K, we can represent f(x) as a
(possibly longer) polynomial g(x) ∈ K[x]. We have that f(x) | g(x), since
f ’s roots are at least g’s roots. Since K is perfect, the irreducible factors
in K only have simple roots. Since f(x) | g(x), the irreducible factors in
f(x) also only have simple roots, and F is perfect.

6. Proof. Consider the minimal polynomial of any α ∈ F : g(x) ∈ K[x], and
f(x) ∈ E[x]. When we split these polynomials in the splitting field of F ,
g’s roots are at least f ’s roots, so f(x) | g(x). Since F is separable over K,
g(x) only has simple roots, and therefore f(x) does too. So F is separable
over E.

7. Proof. Let f, g ∈ K[x] for some fieldK. Let t = max {deg(f(x)),deg(g(x))},
and define the polynomials as f(x) =

∑t
k=0 akx

k, g(x) =
∑t

k=0 bkx
k.

f(x) · g′(x) + f ′(x) · g(x) =
t∑

k1=0

t∑
k2=0

k2ak1bk2x
k1+k2−1 +

t∑
k1=0

t∑
k2=0

k1ak1bk2x
k1+k2−1

=

t∑
k1=0

t∑
k2=0

k2ak1bk2x
k1+k2−1 + k1ak1bk2x

k1+k2−1

=
t∑

k1=0

t∑
k2=0

(k1 + k2)ak1bk2x
k1+k2−1

= (f · g)′(x).

8. Solution. By Theorem (8.2.8), we first find the minimal polynomial for
each adjoined element, x2 − 2 and x2 +1. We want to find a number a ∈ Q
such that
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•
√
2 + ai ̸=

√
2− ai,

•
√
2 + ai ̸= −

√
2− ai.

a = 1 works. So the primitive element is
√
2 + ai =

√
2 + i .

x3 − 1 x3 − 2

Important roots ui = 1, ω, ω2 vj =
3
√
2ω, 3

√
2ω2

Table 1: Roots to consider for u+ av ̸= ui + avj

9. Solution. Let u = ω, v = 3
√
2. The roots we have to consider are the ones

for x3 − 1 and x3 − 2, and are shown in table 1. We can see that a = 1

works here as well, so the primitive element is ω + a 3
√
2 = ω +

3
√
2 .

10. Proof. Suppose some roots of f are in C \ R for contraposition. Then F is
a field extension of Q(i) as well. But then by multiplication of orders,

[F : Q] = [F : Q(i)][Q(i) : Q] = 2[F : Q(i)].

So [F : Q] is even.

11. Proof. Suppose that x = yp for y ∈ K(x). Then

ypx−1 = 1

p · ypx−1 = 0

yp = 0 = x.

Which is nonsensical.

12. Proof. Let f(x) = xp − a. If ∃α ∈ F s.t. αp = a, we have

xp − a = xp − αp = (x− α)p.

Showing that it is a pth power.

If α does not exist, let the splitting field of f be K. In other words,
∃β ∈ K \ F such that βp = a. Therefore in K[x],

f(x) = (x− β)p.

Since gcd is invariant under an extension field, we see that gcd(f(x), f ′(x)) =
(x− β)p−1. So (x− β)p−1 ∈ F [x]. Then

((x− β)p−1)−1(x− β)p = (x− β) ∈ F [x],

contradicting our assumption that β /∈ F .

If I’ve made any errors or you have any other comments on these solutions,
message me on Mathstodon.

Notation

• I write the Galois Field GF(pn) as Fpn .
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