Chapter 8: Fields, Section 2: Multiplicity of Roots

- 1. Proof. Let F be the extension field for p(x) over K. Since K is finite, it is perfect, and the roots for p(x), which is irreducible, are all simple. We have shown that all roots of irreducible factors are simple, so [F:K] = n, implying the Galois group is \mathbb{Z}_n (since we have a simple extension of a finite field).
- 2. Solution. We can verify that $x^4 2$ has not roots in \mathbb{F}_3 . Therefore it is irreducible. Since it is over a finite field, from Problem (1), the Galois group is \mathbb{Z}_4 .
- 3. Solution. x = 1, -1 are roots. We have $x^4 + 2 = (x 1)(x + 1)(x^2 + 1)$. Since $(x^2 + 1)$ is irreducible, the Galois group is \mathbb{Z}_2 .
- 4. Solution. We can factor $x^6 1(x-1)(x+1)(x-3)(x+2)(x-3)(x+1)$. So the splitting field is \mathbb{F}_7 , and the galois group is $\{1\}$. \Box
- 5. Proof. Let M be the splitting field of F. Then we have that for any polynomial $f(x) \in F[x]$ has factorization $h(x) = (x \alpha_1)(x \alpha_2) \cdots (x \alpha_n) \in M[x]$. Since F is algebraic over K, we can represent f(x) as a (possibly longer) polynomial $g(x) \in K[x]$. We have that $f(x) \mid g(x)$, since f's roots are at least g's roots. Since K is perfect, the irreducible factors in K only have simple roots. Since $f(x) \mid g(x)$, the irreducible factors in f(x) also only have simple roots, and F is perfect. \Box
- 6. Proof. Consider the minimal polynomial of any $\alpha \in F$: $g(x) \in K[x]$, and $f(x) \in E[x]$. When we split these polynomials in the splitting field of F, g's roots are at least f's roots, so $f(x) \mid g(x)$. Since F is separable over K, g(x) only has simple roots, and therefore f(x) does too. So F is separable over E.
- 7. *Proof.* Let $f, g \in K[x]$ for some field K. Let $t = \max \{ \deg(f(x)), \deg(g(x)) \}$, and define the polynomials as $f(x) = \sum_{k=0}^{t} a_k x^k, g(x) = \sum_{k=0}^{t} b_k x^k$.

$$f(x) \cdot g'(x) + f'(x) \cdot g(x) = \sum_{k_1=0}^{t} \sum_{k_2=0}^{t} k_2 a_{k_1} b_{k_2} x^{k_1+k_2-1} + \sum_{k_1=0}^{t} \sum_{k_2=0}^{t} k_1 a_{k_1} b_{k_2} x^{k_1+k_2-1}$$
$$= \sum_{k_1=0}^{t} \sum_{k_2=0}^{t} k_2 a_{k_1} b_{k_2} x^{k_1+k_2-1} + k_1 a_{k_1} b_{k_2} x^{k_1+k_2-1}$$
$$= \sum_{k_1=0}^{t} \sum_{k_2=0}^{t} (k_1 + k_2) a_{k_1} b_{k_2} x^{k_1+k_2-1}$$
$$= (f \cdot g)'(x).$$

8. Solution. By Theorem (8.2.8), we first find the minimal polynomial for each adjoined element, $x^2 - 2$ and $x^2 + 1$. We want to find a number $a \in \mathbb{Q}$ such that

- $\sqrt{2} + ai \neq \sqrt{2} ai$,
- $\sqrt{2} + ai \neq -\sqrt{2} ai$.

a = 1 works. So the primitive element is $\sqrt{2} + ai = \sqrt{2} + i$.

Table 1: Roots to consider for $u + av \neq u_i + av_i$

- 9. Solution. Let $u = \omega$, $v = \sqrt[3]{2}$. The roots we have to consider are the ones for $x^3 1$ and $x^3 2$, and are shown in table 1. We can see that a = 1 works here as well, so the primitive element is $\omega + a\sqrt[3]{2} = \left[\omega + \sqrt[3]{2}\right]$.
- 10. *Proof.* Suppose some roots of f are in $\mathbb{C} \setminus \mathbb{R}$ for contraposition. Then F is a field extension of $\mathbb{Q}(i)$ as well. But then by multiplication of orders,

$$[F:\mathbb{Q}] = [F:\mathbb{Q}(i)][\mathbb{Q}(i):\mathbb{Q}] = 2[F:\mathbb{Q}(i)].$$

So $[F:\mathbb{Q}]$ is even.

11. *Proof.* Suppose that $x = y^p$ for $y \in K(x)$. Then

$$y^{p}x^{-1} = 1$$
$$p \cdot y^{p}x^{-1} = 0$$
$$y^{p} = 0 = x.$$

Which is nonsensical.

12. Proof. Let $f(x) = x^p - a$. If $\exists \alpha \in F$ s.t. $\alpha^p = a$, we have $x^p - a = x^p - \alpha^p = (x - \alpha)^p$.

$$x^{p} - a = x^{p} - \alpha^{p} = (x - \alpha)^{p}$$

Showing that it is a pth power.

If α does not exist, let the splitting field of f be K. In other words, $\exists \beta \in K \setminus F$ such that $\beta^p = a$. Therefore in K[x],

$$f(x) = (x - \beta)^p.$$

Since gcd is invariant under an extension field, we see that $gcd(f(x), f'(x)) = (x - \beta)^{p-1}$. So $(x - \beta)^{p-1} \in F[x]$. Then

$$((x - \beta)^{p-1})^{-1}(x - \beta)^p = (x - \beta) \in F[x],$$

contradicting our assumption that $\beta \notin F$.

If I've made any errors or you have any other comments on these solutions, message me on Mathstodon.

Notation

• I write the Galois Field $GF(p^n)$ as \mathbb{F}_{p^n} .