Chapter 8: Fields, Section 1: The Galois Group of a Polynomial

 $x^p = x^2$. So the Galois group consists of the automorphisms.

- 1. Solution. $[\mathbb{F}_4 : \mathbb{F}_2] = 2$, so it immediately follows that $|\text{Gal}(\mathbb{F}_4/\mathbb{F}_2)| = 2$, which implies the result. \Box
- 2. Solution. $\mathbb{F}_{2^3} \cong \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$. The generator for the multiplicative group is $x + \langle x^3 + x + 1 \rangle := u$. The basis for \mathbb{F}_{2^3} is $\{1, u, u^2\}$. This Galois group is generated by the Frobenius automorphism $\phi : x \mapsto$

$$\phi: x \mapsto x^2, \quad \phi^2: x \mapsto x^4, \quad \mathrm{id}: x \mapsto x.$$

- 3. Verified by direct computation.
- 4. Solution provided in book.
- 5. Solution. The splitting field for $x^3 1$ is $\mathbb{Q}(\omega)$, where $\omega = e^{\frac{2\pi}{3}i}$. We have $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$, since we need to adjoin the roots of the polynomial $x^2 + x + 1$. Therefore $|\text{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})| = 2$, implying the result. \Box
- 6. Solution. The splitting field for $(x^2 2)(x^2 + 2)$ is $\mathbb{Q}(\sqrt{2}, \sqrt{-2})$. We see that

$$[\mathbb{Q}(\sqrt{2},\sqrt{-2}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{-2}):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4.$$

We have to find automorphisms that map roots to roots. We readily find $\sqrt{2} \mapsto \pm \sqrt{2}, \sqrt{-2} \mapsto \pm \sqrt{-2}$, yielding 4 automorphisms with order 2. This precisely defines $\mathbb{Z}_2 \times \mathbb{Z}_2$.

7. Solution. To find the splitting field, we note that

$$\begin{aligned} x^4 + 1 &= (x^2 - i)(x^2 + i) \\ &= (x - \sqrt{i})(x + \sqrt{i})(x - \sqrt{-i})(x + \sqrt{-i}) \\ &= (x - e^{\frac{\pi}{4}i})(x + e^{\frac{\pi}{4}i})(x - e^{\frac{3\pi}{4}i})(x + e^{\frac{3\pi}{4}i}). \end{aligned}$$

Therefore the splitting field is $\mathbb{Q}(e^{\frac{\pi}{4}i}) = \mathbb{Q}(\frac{1+i}{\sqrt{2}}) = \mathbb{Q}(i,\sqrt{2})$, which has degree 4 in \mathbb{Q} . Again, we can map roots to roots by $\sqrt{i} \mapsto \pm \sqrt{i}$ and $\sqrt{-i} \mapsto \pm \sqrt{-i}$. So all 4 automorphisms have degree 2, defining $\mathbb{Z}_2 \times \mathbb{Z}_2$. \Box

- 8. Let $f(x) = x^3 2$.
 - a) f(3) = 0, so $f(x) = (x 3)(x^2 + 3x + 4)$. We can check that this has no roots, so it is irreducible. So the splitting field has degree 2 in \mathbb{F}_5 , and the Galois group is \mathbb{Z}_2 .
 - b) We can check that no roots satisfy f(x). So the splitting field has degree 3 in \mathbb{F}_7 for some element α , and the Galois group is \mathbb{Z}_3 .

- c) Note that f(-4) = -66 = 0. So $f(x) = (x+4)(x^2 4x + 5)$. We can check that $x^2 4x + 5$ is irreducible, the Galois group is \mathbb{Z}_2 .
- 9. Solution. Let $f(x) = x^4 1$. We see that f(1) = 0, f(-1) = 0, so $f(x) = (x 1)(x + 1)(x^2 + 1)$. $(x^2 + 1)$ is irreducible, so the Galois group is \mathbb{Z}_2 .
- 10. Proof. Let $\phi: E \to F$ be an isomorphism. Let

$$\Phi: \operatorname{Gal}(E/K) \to \operatorname{Gal}(F/K), \quad \tau \mapsto \phi \circ \tau \circ \phi^{-1}$$

For any automorphism $\tau: E \to E \in \operatorname{Gal}(E/K)$, we have $\phi \circ \tau \circ \phi^{-1}: F \to F$ is an automorphism as well (since it is composed of isomorphisms). Clearly, this composition also fixes K. Therefore $\phi \circ \tau \circ \phi^{-1} \in \operatorname{Gal}(F/K)$.

To show Φ is injective, let $\phi \circ \tau_1 \circ \phi^{-1} = \phi \circ \tau_2 \circ \phi^{-1}$. Then

$$\phi^{-1} \circ (\phi \circ \tau_1 \circ \phi^{-1}) \circ \phi = \phi^{-1} (\circ \phi \circ \tau_2 \circ \phi^{-1}) \circ \phi$$
$$\tau_1 = \tau_2.$$

For Φ to be surjective, for any $\pi \in \operatorname{Gal}(F/K)$, we can take $\phi^{-1} \circ \pi \circ \phi : E \to E$ to get an automorphism of E that clearly fixes K. So Φ is bijective. \Box

$$\begin{array}{c} E & \stackrel{\phi}{\longrightarrow} & F \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

If I've made any errors or you have any other comments on these solutions, message me on Mathstodon.

Notation

• I write the Galois Field $GF(p^n)$ as \mathbb{F}_{p^n} .