Chapter 8: Fields, Section 1: The Galois Group of a Polynomial

1. Solution. $\left[\mathbb{F}_{4}: \mathbb{F}_{2}\right]=2$, so it immediately follows that $\left|\operatorname{Gal}\left(\mathbb{F}_{4} / \mathbb{F}_{2}\right)\right|=2$, which implies the result.
2. Solution. $\mathbb{F}_{2^{3}} \cong \mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. The generator for the multiplicative group is $x+\left\langle x^{3}+x+1\right\rangle:=u$. The basis for $\mathbb{F}_{2^{3}}$ is $\left\{1, u, u^{2}\right\}$.
This Galois group is generated by the Frobenius automorphism $\phi: x \mapsto$ $x^{p}=x^{2}$. So the Galois group consists of the automorphisms.

$$
\phi: x \mapsto x^{2}, \quad \phi^{2}: x \mapsto x^{4}, \quad \text { id }: x \mapsto x .
$$

3. Verified by direct computation.
4. Solution provided in book.
5. Solution. The splitting field for $x^{3}-1$ is $\mathbb{Q}(\omega)$, where $\omega=e^{\frac{2 \pi}{3} i}$. We have $[\mathbb{Q}(\omega): \mathbb{Q}]=2$, since we need to adjoin the roots of the polynomial $x^{2}+x+1$. Therefore $|\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q})|=2$, implying the result.
6. Solution. The splitting field for $\left(x^{2}-2\right)\left(x^{2}+2\right)$ is $\mathbb{Q}(\sqrt{2}, \sqrt{-2})$. We see that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{-2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{-2}): \mathbb{Q}(\sqrt{2})] \cdot[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=4 .
$$

We have to find automorphisms that map roots to roots. We readily find $\sqrt{2} \mapsto \pm \sqrt{2}, \sqrt{-2} \mapsto \pm \sqrt{-2}$, yielding 4 automorphisms with order 2. This precisely defines $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
7. Solution. To find the splitting field, we note that

$$
\begin{aligned}
x^{4}+1 & =\left(x^{2}-i\right)\left(x^{2}+i\right) \\
& =(x-\sqrt{i})(x+\sqrt{i})(x-\sqrt{-i})(x+\sqrt{-i}) \\
& =\left(x-e^{\frac{\pi}{4} i}\right)\left(x+e^{\frac{\pi}{4} i}\right)\left(x-e^{\frac{3 \pi}{4} i}\right)\left(x+e^{\frac{3 \pi}{4} i}\right) .
\end{aligned}
$$

Therefore the splitting field is $\mathbb{Q}\left(e^{\frac{\pi}{4} i}\right)=\mathbb{Q}\left(\frac{1+i}{\sqrt{2}}\right)=\mathbb{Q}(i, \sqrt{2})$, which has degree 4 in \mathbb{Q}. Again, we can map roots to roots by $\sqrt{i} \mapsto \pm \sqrt{i}$ and $\sqrt{-i} \mapsto \pm \sqrt{-i}$. So all 4 automorphisms have degree 2 , defining $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
8. Let $f(x)=x^{3}-2$.
a) $f(3)=0$, so $f(x)=(x-3)\left(x^{2}+3 x+4\right)$. We can check that this has no roots, so it is irreducible. So the splitting field has degree 2 in \mathbb{F}_{5}, and the Galois group is \mathbb{Z}_{2}.
b) We can check that no roots satisfy $f(x)$. So the splitting field has degree 3 in \mathbb{F}_{7} for some element α, and the Galois group is \mathbb{Z}_{3}.
c) Note that $f(-4)=-66=0$. So $f(x)=(x+4)\left(x^{2}-4 x+5\right)$. We can check that $x^{2}-4 x+5$ is irreducible, the Galois group is \mathbb{Z}_{2}.
9. Solution. Let $f(x)=x^{4}-1$. We see that $f(1)=0, f(-1)=0$, so $f(x)=(x-1)(x+1)\left(x^{2}+1\right) .\left(x^{2}+1\right)$ is irreducible, so the Galois group is \mathbb{Z}_{2}.
10. Proof. Let $\phi: E \rightarrow F$ be an isomorphism. Let

$$
\Phi: \operatorname{Gal}(E / K) \rightarrow \operatorname{Gal}(F / K), \quad \tau \mapsto \phi \circ \tau \circ \phi^{-1}
$$

For any automorphism $\tau: E \rightarrow E \in \operatorname{Gal}(E / K)$, we have $\phi \circ \tau \circ \phi^{-1}: F \rightarrow F$ is an automorphism as well (since it is composed of isomorphisms). Clearly, this composition also fixes K. Therefore $\phi \circ \tau \circ \phi^{-1} \in \operatorname{Gal}(F / K)$.
To show Φ is injective, let $\phi \circ \tau_{1} \circ \phi^{-1}=\phi \circ \tau_{2} \circ \phi^{-1}$. Then

$$
\begin{aligned}
\phi^{-1} \circ\left(\phi \circ \tau_{1} \circ \phi^{-1}\right) \circ \phi & =\phi^{-1}\left(\circ \phi \circ \tau_{2} \circ \phi^{-1}\right) \circ \phi \\
\tau_{1} & =\tau_{2} .
\end{aligned}
$$

For Φ to be surjective, for any $\pi \in \operatorname{Gal}(F / K)$, we can take $\phi^{-1} \circ \pi \circ \phi: E \rightarrow$ E to get an automorphism of E that clearly fixes K. So Φ is bijective.

$$
\operatorname{Gal}(E / K) \xrightarrow{\Phi} \operatorname{Gal}(F / K)
$$

If I've made any errors or you have any other comments on these solutions, message me on Mathstodon.

Notation

- I write the Galois Field $\operatorname{GF}\left(p^{n}\right)$ as $\mathbb{F}_{p^{n}}$.

